
 1

Revised September 2008

A quick introduction to STATA:
(by E. Bernhardsen, with additions by H. Goldstein)

1. How to access STATA from the pc’s at the computer lab

After having logged in you may find STATA 9 (or Intercooled Stata 9) under Programs
on your computer, and you can start it straight away. Otherwise you have to log in again
at a remote desktop at the server “statwin32”.
In that case do the following: Go to

Start -> Programs -> Accessories ->(Communications ->)1 Remote Desktop Connection

Write statwin32 in the window “computer” in the menu that appears, and then press
connect. Log in, and a new desktop should appear on the screen.

Now you can start STATA by:

Start -> Programs -> SV-programs -> Stata9 -> Intercooled Stata 9

2. The windows:
STATA has separate windows for typing in commands and for viewing results. In the
review window can view (and activate) the command lines you have previously written.
In the variables window all variables and labels are listed.

1 On some computers you do not need to enter Communications.

 2

Excercise; Load the exercise data, stored in a file called auto.dta, which is included in
STATA. I.e., write sysuse auto (or sysuse auto.dta) in the command window and press
enter (more details below).

You can obtain a description of the data set via the menu:
File -> Example datasets -> Example datasets installed with Stata
and then click the describe link outside auto.dta.

In any case you will see that the command line enters the review window and the results
window (this illustrates how the menus can be used to learn the command lines. Learning
the commands facilitates greater flexibility, quicker computing, and clearly a better
understanding of how the program operates). For example, from the review window we
see that the data description we obtained via the menus, we could have obtained directly
by entering the command sysdescribe auto.dta. Clicking on that line reproduces the
command in the command window. Pressing enter then runs the command again.

Note also that now all the variables in the data set are listed in the variables window.

 3

3. More on how to load, save and use the built-in data set,
auto.dta

To obtain a list of all built-in data sets that follow with STATA, you can use the
command sysuse dir.

The command dir gives a listing of your own home directory (i.e., M:\).

You can save a copy of the data set (or any other data set) in your own directory by the
command save, and later retrieve it by the command use. By save the data are stored in a
binary file (with extension .dta) – in a special STAT format that is easy to read for
STATA. For example, the command save auto, makes a copy of the data set, with name
“auto.dta”, in your home directory. This is specially useful if you have made changes and
additions to the data set during your STATA session. Then, next time you start STATA
for a new session, you can simply give the command use auto, and the data are reloaded
into STATA as you left them last time.

If you have many files in your home directory, it may be smart to make a new
subdirectory and change the working directory to that one. For example, before starting
STATA, suppose you have already made a subdirectory, called statadat (say), to contain
all your stata files. Then, within STATA, the command cd statadat changes the working
directory to M:\statadat, and commands like save, dir, use, etc. will refer to that directory
(instead of to M:\ which is the default). The next time you open STATA, the first thing
you should do, is to give the command cd statadat, (or with your chosen name for the
directory) so that your working directory is the correct one.

4. The spreadsheet:
If you write edit or browse in the command box, a spreadsheet window will pop up (there
are also a menu and short cut buttons for opening the spreadsheet window). If you used
the browse command, you can only view and not edit the spreadsheet.

 4

If you double click the variable names you can edit the name, or the variable labels. You
are also given information on the format of the variable. In the spreadsheet you have
opened, clicking on the variable name “make” tells you that the label is “Make and
model” and the format is “%-18s”. The s indicates that the variable “make” is a string
variable (consists of letters, not numbers), and that it will be stored using (maximum) 18
letters. The variable “price” has the different format “%8.0gc”. Here, the letter “c”
indicates that a comma is used to separate at the thousands, while “g” indicates that the
variable is stored as an integer. If we change the format to read “%8.1fc”, the variable is
no longer stored as an integer, but as a number on the real line where one decimal place is
shown. If we edit it to “%8.2fc”, two decimal places is shown etc. Writing only “%8.2f”
will take away the comma separation at the thousands.

A note on formats; number variables can indeed be stored as string variables. This will
often be the case when the data that is loaded is not originally in STATA format. When
such data is loaded, it is therefore good practice to check whether the number variables
are stored correctly.
In STATA you can refer to each variable by the variable name. You can also refer to the
line number by using the reference “in”.

Important! Note that you cannot run commands when either the “edit spreadsheet”
window or the “browser” window is open. You have to close these windows before you
can issue any commands.

 5

 Exercise; Write the command list make in 2, and the command list weight in 1/7. What
is returned in the results window?

5. The help facility:
Suppose you want to use the generate command, and cannot quite remember how it is
used. You can then type help generate in the command window. Then a new “viewer
window” with the help appears. (The “viewer” is an attached program that is designed to
read STATA output files. It can read other files as well.) This window can be printed by
specification on the file menu. The view editor can also be used to view and print
contents of the results window. See “using log files”, later in this document.

 6

6. The command syntax:
The command syntax is almost always on the general form:

[by varlist:] command [varlist] [if exp] [in range] [,options]

Where:
 varlist refers to a list of variables, e.g. mpg weight length price.
 exp refers to a logical expression
 range refers to a range of line numbers
 options, will depend on the command in question. The options must be specified at the
end of the command line, after a comma separator.

The brackets indicate that specification is optional. The [by varlist:] formulation is
optional and specifies that the command is to be repeated for each variable in the variable
list. Not all commands can use this formulation.

The command syntax is best illustrated by a few simple examples:

EXAMPLE; In the tutorial dataset we may want to construct a new variable that equals
mpg/weight. Writing help generate in the command window returns the following syntax
from the results window.

generate [type] newvar[:lblname] = exp [if exp] [in range]

Here the command name (generate), the name of the new variable to be generated
(newvar) and the function that describes how the new variable is to be constructed (=exp)
has to be specified. The help text explains that [type] has to be specified only if the
variable that you want to create is to become a string variable, or if it is important to
specify the decimal precision of the new variable. If a string variable is to be generated
type can be specified to str10 if the variable is to be stored with 10 letters. If a number
variable that is generated has to have decimal precision type can be specified to double.
The :lbname formulation is optional an allows you to specify a variable label that
describes the content of the new variable.

To generate the new variable we type

generate x = mpg/weight (or shorter: gen x=mpg/weight)

If you want to change the content of an existing variable, you can use the replace
command:

replace oldvar = exp [if exp] [in range] [, nopromote]

 7

Exercise; You can use the help function to establish what the following commands does;
(these are must-to-know STATA commands). Try e.g. “list”.

save
correlate
summarize
tabulate
sort

label
describe
list
count
mark

drop
keep
regress
egen
rename

merge
collapse
test
predict
clear

7. Num(ber)lists:
Often you will find reference to numlist in the STATA syntax description. Numlist is simply a
sequence of numbers, which can be specified in various ways. As an example; the sequence 2 4 6
8 10 and the numlist 2(2)10 will be synonymous to STATA. To get an overview of different
ways to specify numlists, type help numlist.

8. Logical expressions:
If you decide to use the optional [if exp] specification you must use a special syntax for logical
expressions.

== equals to
~= not equal to
>= larger than or equal to, etc..
> larger than
< less than
& and
| or

EXAMPLE (do this)
tabulate make rep78 if foreign==1
tabulate make rep78 if foreign==1&price<4000
tabulate make rep78 if foreign==1|price<4000

How many different makes did you get in each of the three cases?

Note 1: Note (in browse) that the variable “foreign” has two values, 1 (with label “Foreign”)
and 0 (with label “Domestic”). The actual values, 1 and 0, are stored, but the labels “Foreign”
and “Domestic” are displayed in the data base. If you click one value (i.e. one of the “Foreign”s),
you will see the corresponding numerical value in the small window at the top of the data base
window. The command, label list, will give a list of labels defined. You can learn how to define
labels in your data set by help label.

Note 2: Remember to close the data window before issuing any command.

 8

9. Graphics
The graphics facility in STATA is quite well developed and allows numerous variations. For a
start it is recommended to experiment with the graphics menu. You can then note the syntax that
is automatically written in the results window. Use the auto dataset. Make a histogram over price
using 10 bins (Command: histogram price, bin(10)). You can also use the menu, Graphics ->
Histogram. Compare box-plots of foreign and domestic cars (graph box price, medtype(line)
over(foreign)). Draw a scatter diagram of miles pr. gallon and weight (twoway (scatter mpg
weight)). Try also to reproduce these three graphs by using the graphics – menu.

10. Linear regressions:

To fit simple or multiple linear regressions, use the regress command (or by the menu: statistics -
> linear regression ….). Using the auto data, generate variable x=mpg/weight and type:

regress price mpg weight x foreign

Exercise; Interpret the estimated model2. Check out the syntax for the predict command used
after the regress command and use it to obtain the predicted price, predicted residuals and
squared residuals. [e.g. predict predy produces a new variable in the database containing the
predicted values. It is here called predy, or another name that you choose. The command predict
res , residuals produces a variable, containing the residuals (i.e. observed price minus predicted
price), with name res, or another name of your choice.]
Can you use the scatter command, or the graphics->Two way graphics (scatterplot, line etc)
menu to assess whether the model specification is likely to be heteroscedastic (e.g. plot the
residuals against the predicted price)? Use the help facility to list the functions library. Generate a
variable that equals the natural logarithm of the price and re-estimate the model. How would you
interpret the model now?

11. Using log-files:

This facility allows you to print or save all commands you used for a session with STATA. It is
particularly useful when you hand in written papers in class, so that the teacher can see how you
obtained your results. To start logging a session, type log using sessionname, where sessionname
is the name you decide for the session. This logging you can turn off and on again temporarily
during the session by the commands log off and log on. When the session is completed,however,

2 In regression analysis we try to explain a dependent variable (price) by a linear combination of some explanatory
variables (mpg, weight, x, foreign). In other words:
 0 1 2 3 4price mpg weight x foreign errora a a a a= + ⋅ + ⋅ + ⋅ + ⋅ +
where the constants , which in the output from Stata appear under “Coef”, are determined (estimated)
by the program from the data in an optimal manner so that the last term “error” (i.e. the unexplained part of price -
also called residual) becomes as small as possible on average (in a certain sense). The linear combination (before the
error term) represents the explained part of price and is called predicted price. If the model is good, the error term
should be evenly distributed around zero (i.e. have constant variance) whatever the value of predicted price. If that is
not the case, we call the model heteroscedastic.

0 1 4, , ,a a a…

 9

type; log close. In the results window you will now be told where the log file is saved. When you
want to view or print the log file you type; view address\sessionname.smcl.

Note. “smcl” is the program STATA uses to produce output files (see help smcl for more
information). It produces files with the extension smcl. You can copy content in the viewer to a
word document in the usual manner (i.e., marking, copy and paste). If you want the log-file in the
usual text format, you must add the option “text” to the log using – command, i.e.,

log using sessionname, text (don’t forget the comma).

12. Make patterned/random data

Input the following lines and figure out what they do.

Command Notes
clear
browse Close the browse window to get back to the

command level.
Set obs 100
browse
egen year = fill(1900 1901) “egen” is an extended version of “generate” that we

need for defining new variables, e.g. consisting of
patterned data and other types.

browse
egen trend = fill(0.1(0.1)10)
browse
generate a = sin(trend)
browse
generate cycle=trend+a
twoway (line trend cycle year)
set seed ? Replace ? by an integer of your choice, e.g. your

birthday like for example 100781. This starts the
algorithm for generating random data. By using the
same seed you can produce the same data later. If
seed is not specified, stata will choose a seed by
default which changes every time you draw random
numbers.

drawnorm u
generate gdp = cycle+u
twoway (line trend cycle gdp year)

 10

Exercise; Load the auto dataset. Explain why this sequence of commands can be used to draw a
random sample of 20 cars:

gen u = uniform()
sort u
mark sample in 1/20

13. The do-file editor

Often you will need to type a sequence of commands several times. In this case you should use
the do-file editor (press the short cut icon with a picture of an envelope). In the do-file you can
write in multiple lines and run them in a sequence. You can save the do-file for later use. Often
you will want to specify loops in the do-file editor. As an example, suppose you have variables;
year1, year2, year3, … , year100, and that you want to transform these variables from string to
real numbers. You can then type (don’t do this now unless you have 100 string variables called
year1, year2,… defined in the data base!)

forvalues x = 1/100 {
 generate y`x’ = real(year`x’)
 }

STATA will then perform this command successively for `x’ running from 1 to 100. Note that all
the definitions for numlist can be used with this command.

To test out a loop, try the following command in a do-file (for the di command see below).

forvalues x = 2/20 {
di “I will do `x’ attempts to do my homework properly”
}

Note: This small program you can also enter directly in the command window. Note that the
three lines must be entered separately: After the first line press enter. Then a number, 2, appears
waiting for the second line and so on. The last line (the end brace) closes the program input and
runs the program. (Note that the single quotes in `x’are different. The first one I find on my
keyboard on the top of the back-slash (\) key, and the last one on my *-key.)

14. Calculator
di is short for the display command. display is used for printing strings or scalar numbers. It can
be used as a calculator. Try out the following (-> denotes output):

You want the value of e:
di exp(1)
-> 2.7182818

 11

You want higher precision (10 decimal places):
di %12.10f exp(1)
-> 2.7182818285

You want to describe the output:
di “e = “ exp(1)

You want to calculate 2π (π in STATA is _pi):
di sqrt(2*_pi)

15. Loading data in ASCII format:
If data is in ASCII format, you cannot use the use command. Try instead the insheet command.
You can check out the syntax for insheet using the help facility.

Exercise
a. STATA has implemented the cdf for the (,1)αΓ -distribution, i.e., the function

gammap(a,x). [See help probfun for a list of probability functions implemented, and help function for a
list of functions in general.]. For example, di gammap(2, 1.5) gives .4421746, which is the
probability where (1.5P T ≤) ~ (2,1)T Γ (i.e. 2α = .

 Now, make a table of (1|P T t T t)≤ + > for 0.5, 1, 1.5, 2, 2.5, 3, 3.5t = and for

0.5, 1, 2α = (with 1λ = always). Note that writing for the cdf of T, we get ()F t

 (1) ((1|) 1 (1|) 1 1
() ()

P T t T t P T tP T t T t P T t T t
P T t P T t
> + ∩ > > +

≤ + > = − > + > = − = −
> >

1)

 Hence

 1 (1) (1) ((1|) 1
1 () 1 ()

F t F t F tP T t T t
F t F t

− + + −
≤ + > = − =

− −
)

 [Hint: First empty STATA of all data by the clear command. Then open the data

spreadsheet e.g. by the data editor icon. Enter the data for t (0.5, 1, …., 3.5) in the first
column. I.e., start with writing 0.5. Note that it appears in the little window at the top. Press
enter. Now, the number is entered in the first cell of column 1 (with name var1). Write the
second number, 1, and press enter and so on. Change the name of the first column from

 12

var1 to, for example, t, by double clicking on the head of the column and then write in the
new name.
After thus having entered the numbers for t, generate a new column named e.g. y1 with

 for (1|P T t T t≤ + >) 0.5α = . This can be done by the gen command:

gen y1 = (gammap(.5,t+1) – gammap(.5,t))/(1 – gammap(.5,t))

Repeat this for α equal to 1 and to 2.

Note that you now can save the results in a Stata data set by the save command. Say you
want to name the dataset “gam”, for example. Then use the command save gam. The table
is then saved as a Stata data set in your working directory under the name gam.dta. You can
easily retrieve the data in a later session (using the same working directory; see section 3),
simply by the command use gam.]

b. Suppose we want to calculate (4)P T ≤ when ~ (2, 3.2)T α λΓ = = , with λ different from
1. In order to use gammap for this we must transform T to (,1)αΓ . According to the
solution of Rice exercise 2:61, ~ (,1)Y Tλ α= Γ . Hence, for 3.2λ = we get

 (4) (3.2 (3.2)4) (12.8)P T P T P Y≤ = ≤ = ≤
 Then you can use gammap. (Confirm that the answer is 0.9999619).

	A quick introduction to STATA:
	1. How to access STATA from the pc’s at the computer lab
	2. The windows:
	Note also that now all the variables in the data set are listed in the variables window.
	3. More on how to load, save and use the built-in data set, auto.dta
	4. The spreadsheet:
	5. The help facility:
	6. The command syntax:
	7. Num(ber)lists:
	
	8. Logical expressions:
	9. Graphics
	10. Linear regressions:
	11. Using log-files:
	12. Make patterned/random data
	13. The do-file editor
	14. Calculator
	15. Loading data in ASCII format:
	Exercise

